The data structures supported by surface-mount assembly equipment can critically influence the adoption of smart manufacturing in today’s electronics-manufacturing enterprises
Following mechanisation, mass production, and computerised automation, the fourth industrial revolution (Industrie 4.0) is transforming traditional automation into cyber-physical systems. These are expected to enable new ways of organising production, support the creation of new products and services, and open new opportunities for participation.
Surface-mount electronics manufacturing has a leading role in the revolution: not only are the instruments of Industrie 4.0 built here – from tiny smart sensors to Internet infrastructure and high-performance Cloud servers – but also advanced inline automation is combined with powerful software applications to implement smart manufacturing that adapts continuously to optimize productivity.
It’s All About the Data
In today’s electronics manufacturing services (EMS) businesses, the traditional boundary between factory floor and back office is disappearing as more and more manufacturing data is harvested and analysed to reveal new insights for further enhancing efficiency, quality and productivity. The data must first be collected from the equipment in the line, analysed instantaneously to aid real-time management of the line, and then shared with back-office systems and Cloud applications to identify long-term trends and determine strategically how to improve.
The production line may combine equipment such as dispenser or screen printer, mounters and optical inspection from a number of different manufacturers. Although there are industry standards that allow basic communication between the various machines, interfaces between equipment from different vendors often cannot support the rich information exchanges needed to enable smart manufacturing. Even if all the equipment is supplied by the same vendor, some brands are better suited to smart manufacturing than others.
The way the data is organised is critical, and some manufacturers are able to demonstrate data structures that are well suited to making detailed information readily available to analytical software. Yamaha Motor Intelligent Machines Division has created its own specification for a machine-to-machine interface that enables rich real-time data exchanges between inline surface-mount equipment. Moreover, a complete set of software applications capture and analyse the data. These have been proven over several product generations, and are now poised to help SMT manufacturers transition their enterprises to smart manufacturing.
Seamless Connection of Enterprise Assets
Among these software applications, Yamaha QA Option is hosted on the line and compares post-placement inline optical inspection (AOI) data with dispenser/printer and mounter data (figure 1) to pinpoint any component-placement errors or solder-paste defects down to the level of individual mounter nozzles or stencil apertures. Notifications presented on-screen (figure 2), or pushed to the supervisor’s own device via Yamaha’s Mobile Judgement software, enable immediate remedial action, and hence improve quality control and drive-up productivity. The information gathered has also been able to drive predictive maintenance, which is also now seen as an important aspect of smart manufacturing.
Figure 1. 2D AOI information captured after component mounting can be shared with printer and mounters to generate alerts through QA Option software
Figure 2. The data available to QA Option enables the exact causes of defects to be identified instantly.
By facilitating setup, the S-Tool utility helps manage materials that may otherwise deteriorate over time. Automatically monitoring stock age and condition helps exclude any unsuitable materials from finished products. By recording data such as the board code, solder paste type, and the identities of component feeders and reels, S-Tool can help prevent errors and improve product quality. When assembling LED-lighting products, for example, checking the LED brightness (BIN), colour temperature and illumination pattern indicated on product barcodes helps prevent building assemblies using parts that are not closely matched. It can also connect to any component tower storage system, and use parts-remaining information from machines in the line to coordinate reel and feeder changes to ensure timely replenishment and minimize stoppages.
Monitoring equipment in each line and across the factory using M-Tool enables checking of status via a web-based interface to assess detailed information such as efficiency, operating ratios and pickup rates in real time. Figure 3 shows how colour-coded status enables fast and easy monitoring of line status. It is an easy next-step to consolidate this data automatically into reports for storage and analysis by higher-level applications running in the Cloud.
The traceability application, T-Tool, records each individual assembly identifier with its associated board identity and component data for every placement on the board. This is one area the underlying data structure of the surface-mount equipment is critical for handling the detailed component-level information. Yamaha’s proprietary data structure can record component serial numbers as well as position data and the PCB serial number and transfer the information through a shop-floor system into a traceability database. This database can be queried for numerous purposes, such as tracking inventory and materials throughout the production flow to assist purchasing for just-in-time assembly, to help demonstrate conformity with customer requirements, or to verify the provenance of components.
These software packages take advantage of the rich information-sharing capabilities between connected SMT equipment in each line and across the factory. Sophisticated communication capabilities make the equipment inherently ready to support the introduction of advanced smart-manufacturing practices that will take data-driven monitoring and control to the next level.
Conclusion
Businesses are making the move into smart manufacturing to deliver high-quality products to global markets at competitive prices, while at the same time meeting market demands for large numbers of product variants and options to customize or individualize. Rich inter-machine communications hold the key to extracting the data needed to analyse performance, and communicating the changes necessary to adapt quickly and efficiently. Where suitable machine interfaces are already in place, proven software tools for setup, monitoring and traceability enable close connections between manufacturing, planning and management, and can help electronic manufacturers accelerate their transition to smart manufacturing.
About Yamaha Robotics SMT Section
Yamaha Surface Mount Technology (SMT) Section is a subdivision of Yamaha Motor Robotics Business Unit in Yamaha Motor Corporation. Yamaha surface mount equipment is highly acclaimed in the market for their “module concept” that enables them to keep pace with the trend toward smaller and more diverse electric/electronic parts being mounted on circuit boards.Yamaha SMT Section has created a strong business in the surface mount industry that enables design and engineering, manufacture, sales and service to be conducted in one comprehensive system. Furthermore, the Company has used its core technologies in the areas of servo-motor control and image recognition technology for vision (camera) systems to develop solder paste printers, 3D solder paste inspection, 3D PCB inspection machines, flip chip hybrid placers and dispensers. This allows Yamaha SMT Section to offer a full line of machines for electric/electronic parts mounting and propose optimum production-line makeup to answer the diversifying needs of today’s manufacturers.
Yamaha SMT Section has sales and service offices in Japan, China, Southeast Asia, Europe and North America provide a truly global sales and service network that will safeguard best in class on-site sales & service support for clients.
www.yamaha-motor-im.eu
Figure 3. At-a-glance status indicators help manage a high product mix spread across multiple SMT lines.
Contact info
Oumayma Grad
Marketing Communications Manager
Hansemannstraße 12
41468 Neuss
Germany
Office: +49 2131 2013 538
Mobile: +49 1517 0233 297
Fax: +49 2131 2013 550
Email: oumayma.grad@yamaha-motor.de
Web: www.yamaha-motor-im.eu